Government College of Engineering and Research, Avasari(Khurd)

Department: Mechanical Engineering

Learning Resource Material (LRM)

Name of the course: Mechanical System Design Course Code: 402048

Name of the faculty: J. M. Arackal Class: BE(Mech)

SYLLABUS(6)

Unit 6: Optimum Design

Objectives of optimum design, adequate and optimum design, Johnson's Method of optimum design, primary design equations, subsidiary design equations and limit equations, optimum design with normal specifications of simple machine elements- tension bar, transmission shaft and helical spring, Pressure vessel Introduction to redundant specifications (Theoretical treatment)

Lecture Plan format:

Name of the course: Mechanical System Design Course Code 402048

Name of the faculty: J. M. Arackal

Class: BE(Mech)

Unit No	Lecture No.	Topics to be covered	Text/Reference Book/ Web Reference
		UNIT 6	
6	1	Objectives of optimum design, adequate and optimum design	3
6	2	Primary design equations	3
6	3	Subsidiary design equations and limit equations	3
6	4	Optimum design with normal specifications of simple machine elements	3
6	5	tension bar, transmission shaft and helical spring, Pressure vessel Introduction to redundant specifications	3
6	6	General principles of design for manufacture and assembly	3
6	7	Principles of design of castings and forgings	3
6	8	Design for machining, design for safety	3

List of Text Books / Reference Books/ Web Reference

1-Bhandari V.B. —Design of Machine Elements^{II}, Tata McGraw Hill Pub. Co. Ltd.

2-R.K. Jain- Machine Design, Khanna Publishers

3-Johnson R.C., —Mechanical Design Synthesis with Optimization Applications^I, Von Nostrand Reynold Pub

UNIT6- OPTIMUM DESIGN

Optimum design is th selection of material & the values for independent geometrical parameters with the explicit objective of either minimizing most significant undesirable effects or maximizing most significant functional requirement while making certain that the mechanical element satisfies function requirement & other undesirable effects are kept within tolerable limits. For example if one wants to design a shaft for a machine with "Minimum weight criteria for that particular application" then there will be a single solution out of various options available. Such design is called optimum design.

Optimization

$\delta = \frac{8WD^3 n}{G d^4} W = \frac{\delta d^4}{8 D}$	$\frac{4}{3}\frac{G}{n}$	Fu rec car	nctio Juire Try L	onal ment: .oad(W	To)
Personal and the story down	FRP		DP	GP	MP
of FRPs, MPs, GPs	W	=	$\frac{\delta}{8}$	$\frac{d^4}{D^3}$	G

3) Combining SDE with PDE	
PDE: $cm = C (p A L g)$	$C_{m} = C(o(P/\sigma) I \alpha)$
SDE: $\sigma = P/A \dots A = P/\sigma$	

4) Combining LE with PDE		
PDE: Cm= C (ρ (P/ σ) L g)	$Cm = C (\rho (Fos*P/Syt) L g$	
LE: $\sigma \leq [Syt/FoS]$		

LE effect can be directly included in Developed PDE

NORMAL CASE

Material	ð Kg/m*3	C Material Cost Rs/Weight(N)	Yield Strength MPa	MSF=[C &/Syt]
Steel	7500	16	130	923.077
Aluminum alloy	3000	32	50	1920
Titanium Alloy	4800	480	90	25600
Magnesium Alloy	2100	32	20	3360

Eliminated U/U Parameter: A

$$\sigma = P/A$$
.

$$\sigma = Syt / FoS = 130/2 = 60$$

$$\frac{A = P/\sigma = 5000/60 = 76.923 \text{ mm}^2}{\text{Cm} = [\text{MSF}]^* [g P L]^* (\text{FoS.})}$$

Problem (2) Design a sha torsional stift theory of fail	t for minimum weig fness (rigidity) is 90 l ure. Use FoS =1.5	ht. It transmits a N-m/degree. Usi	torque 900 N- ng Maximums	m. Required Shear stress
Material	ô, Mass Density Kg/m/3	G Modulus of rigidity GPa	Yield Strength MPa	Material Cost (Rs/ N weight)
MI	8500	80	130	16
M2	3000	26.5	50	32
M3	4800	40	90	480
M4	2100	16	20	32

Aim: Design: To find L and d [minimize weight] Significant Undesirable effect: To minimize weight (W)

Problem (3):

<u>Design</u> a thin walled spherical vessel for maximizing gas storing capacity under pressure, pi=4 Mpa. t<<D, t=wall thickness, D= Mean diameter of the vessel. FoS = 3; Mass of vessel \leq 125 Kg. Design the pressure vessel with the objective of maximizing the gas storage capacity,

Material	P- Mass Density Kg m 3	Ultimate Strength Sult MPa
MI	7800	500
M2	2800	250
M3	8400	420

Mass of vessel M= $\rho \pi D^2 t$ Stress induced $\sigma t = (p D)/4t$

Aim: Design: To find D and t [For maximizing storage capacity, V]

Final PDE

$$V = 6.944 * 10^{-6} * \frac{Sult}{\rho}$$

$$W = 6.944 * 10^{-6} * MSF$$

$$MSF = \frac{Sult}{\rho}$$

Material selection factor

Material	ρ. Mass Density Kg/m ⁻ 3	Ultimate Strength Sult N/m ²	$MSF = \frac{Sult}{\rho}$
MI	7800	500*106	64102.564
M2	2800	250*106	89285.714
M3	8400	420*106	50000

As to maximize	V, MFS should	be maximum
----------------	---------------	------------

We get

Result

D=1.05796 m =1057.96 mm t=12.7 mm V= 6.944 * $10^{-6} * \frac{Sult}{\rho} =0.62 \text{ m}^3$

ASSIGNMENT- DESIGN OF IC ENGINE COMPONENTS

1- Explain the procedure of solving optimum design problems with redundant specifications.

2- A tensile bar of length 400mm is subjected to constant tensile force of 3000N. If the factor of safety is 2, design the bar diameter, using Johnson's method, with the objective of minimizing material weight using optimum material from the list given in Table.

Material	Density(Kg/m ³)	Cost (Rs/ Kg)	Syt(N/mm ²)
Steel	7800	28	400
Aluminium Alloy	2800	132	150
Titanium Alloy	4500	2200	800

3- Explain the design considerations for design of castings

4- What is design for manufacture? Explain the general principles to be followed while designing the parts of manufacture

5- What is design for safety? Explain the general principles to be followed while designing the product for safety?

6- What are the principals of design of castings and forgings?

7- How to identify whether an optimum design problem is based on normal specifications or redundant specifications? What is the difference in the design procedure of problems based on these two specifications?

8- Differentiate between adequate and optimum design. Also explain different types of equations that are used in 'Johnson's method of optimum design'.

9- A tensile bar of length 450mm is subjected to constant tensile force of 4000N. If the factor safety is 1.5, design the bar diameter, using Johnson's method, with the objective of minimizing material weight using optimum material from the list given in Table.

Material	Density(Kg/m ³)	Cost (Rs/ Kg)	Syt(N/mm²)
Steel	7800	28	400
Aluminium Alloy	2800	132	150
Titanium Alloy	4500	2200	800

10-Write a short note on design for machining